
Stochastic Lambda Calculus and
Monads of Probability Distributions

Norman Ramsey Avi Pfeffer
Division of Engineering and Applied Sciences

Harvard University

Abstract

Probability distributions are useful for expressing the mean-
ings of probabilistic languages, which support formal mod-
eling of and reasoning about uncertainty. Probability dis-
tributions form a monad, and the monadic definition leads
to a simple, natural semantics for a stochastic lambda cal-
culus, as well as simple, clean implementations of common
queries. But the monadic implementation of the expectation
query can be much less efficient than current best practices
in probabilistic modeling. We therefore present a language
of measure terms, which can not only denote discrete prob-
ability distributions but can also support the best known
modeling techniques. We give a translation of stochastic
lambda calculus into measure terms. Whether one trans-
lates into the probability monad or into measure terms, the
results of the translations denote the same probability dis-
tribution.

1. Introduction

Researchers have long modeled the behavior of agents using
logic, but logical models are a poor choice for dealing with
the uncertainty of the real world. For dealing with inherent
uncertainty and with incomplete knowledge, probabilistic
models are better.
There are a variety of representations and reasoning tech-

niques for probabilistic models. These techniques, which
include Bayesian networks (Pearl 1988) and other kinds
of graphical models (Jordan 1998), are centered around
the structuring and decomposition of probability distribu-
tions. Recent work focuses on scaling up the techniques
to deal with large, complex domains. Domains that re-
quire large-scale modeling techniques include medical di-
agnosis (Jaakkola and Jordan 1999) and military intelli-
gence (Mahoney and Laskey 1998).
As models grow large, it becomes more important to be

able to build them easily and to reuse the parts—but con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

POPL ’02, Jan. 16-18, 2002 Portland, OR USA

c©2002 ACM ISBN 1-58113-450-9/02/01. . . $5.00

sidered as programming languages, the techniques used to
build probabilistic models are weak. We would like to draw
on the large body of knowledge about programming lan-
guages to design a good language that supports probabilis-
tic modeling. Stochastic lambda calculus, in which the deno-
tations of expressions are probability distributions, not val-
ues, is a suitable basis for such a language. To express the
semantics of a stochastic lambda calculus, we exploit the
monadic structure of probability distributions (Giry 1981;
Jones and Plotkin 1989).
The contributions of this paper are:

• We show that the probability monad leads to simple, el-
egant implementations of three queries commonly posed
of probabilistic models: expectation, sampling, and sup-
port. Using the monad as an intermediate form simpli-
fies proofs of desirable properties, e.g., that the sampling
function draws values from any model using appropriate
probabilities.

• We show that the monadic implementation of expecta-
tion is potentially much less efficient than techniques
currently used in probabilistic reasoning. The problem
arises because a monad does not exploit intensional prop-
erties of functions; it only applies functions. To support
an alternative implementation of expectation, we trans-
late stochastic lambda calculus into a simple language we
call measure terms. By algebraic manipulation of mea-
sure terms, we can express variable elimination, which is
the standard technique for efficiently computing expec-
tation. Measure terms denote measures, and our trans-
lation into measure terms is consistent with our monadic
definition of stochastic lambda calculus.

Our work has implications for both design and imple-
mentation of probabilistic languages. For design, we show
that one can support efficient probabilistic reasoning sim-
ply by adding a choose operator to an ordinary func-
tional language; it is not necessary to include language
features that expose common implementation techniques
such as variable elimination. For implementation, we
show that standard techniques of programming-language
implementation—monadic interpreters and algebraic ma-
nipulation of programs (including common-subexpression
elimination)—can apply to probabilistic languages. Prob-
abilistic reasoners can enjoy the benefits of higher-order,
typed languages, without requiring undue effort from im-
plementors.

154

2. Probabilistic models and queries

The simplest language we have found to describe probabilis-
tic models is a lambda calculus in which expressions denote
probability distributions. The primary means of creating
interesting probability distributions is a new construct that
makes a probabilistic choice. choose p e1 e2 represents a
linear combination of two distributions. Operationally, to
take a value from the combined distribution, with proba-
bility p we take a value from e1 and with probability 1− p
we take a value from e2.

2.1. An example model

To illustrate our ideas, we present a simple model of traffic
lights and drivers, using a Haskell-like notation. Traffic
lights are probabilistically red, yellow, or green.

〈traffic example〉≡
light1 =

dist [0.45 : Red, 0.1 : Yellow, 0.45 : Green]

dist is a version of choose that is extended to combine
two or more weighted distributions. Here it means that
light1 has value Red with probability 0.45, value Yellow

with probability 0.1, and value Green with probability 0.45.
Drivers behave differently depending on the colors of the

lights they see. A cautious driver is more likely to brake
than an aggressive driver.

〈traffic example〉+≡
cautious_driver light =

case light of

Red -> dist [0.2 : Braking, 0.8 : Stopped]

Yellow -> dist [0.9 : Braking, 0.1 : Driving]

Green -> Driving

aggressive_driver light =

case light of

Red -> dist [0.3 : Braking, 0.6 : Stopped,

0.1 : Driving]

Yellow -> dist [0.1 : Braking, 0.9 : Driving]

Green -> Driving

We estimate that if two drivers go through a single light
from different streets, there is a 90% probability of a crash.

〈traffic example〉+≡
crash d1 d2 light =

[0.90 : d1 light == Driving &&

d2 (other light) == Driving,

0.10 : False]

where other Red = Green

other Green = Red

other Yellow = Yellow

2.2. Queries

Having defined a probabilistic model, we might wish to ask
questions about it. For example, if two drivers, one cau-
tious and one aggressive, are approaching light1, what is
the probability of a crash? This question and many others
can be answered using three kinds of queries: expectation,
sampling, and support.
The expectation of a function h is the mean of h over

the distribution. Expectation subsumes some other queries
as special cases. The mean value of a distribution is

Language for
models & queries

Stochastic lambda calculus

Probability monad Measure terms

Expectation Sampling Support Expectation

Ovals are representations; boxes are queries

Figure 1: Implementation paths

the expectation of the identity function. The probabil-
ity of an outcome satisfying predicate p is the expecta-
tion of the function \x -> if p x then 1 else 0. Condi-
tional probability can be computed from probability, since
P (p | q) = P (p∧q)÷P (q). In the example above, we can an-
swer the question about the probability of a crash by build-
ing the probability distribution of crash cautious driver

aggressive driver light1 and computing the probability
of the identity predicate.

Sampling means drawing a value from the distribution.
By sampling repeatedly, we can not only approximate ex-
pectation but also get an idea of the shape of a distribution,
or of some function over the distribution. Like true exper-
imental data, samples can be fit to analytic solutions to
equations; “Monte Carlo” techniques used in the physical
sciences rely on sampling.

Support tells us from what subset of the entire sample
space a sample might be drawn with nonzero probability.
It is seldom interesting by itself, but a good implementa-
tion of support can make it easier to compute expectations
efficiently. Support therefore plays a significant role in our
implementation.

2.3. Implementing probabilistic models

This paper presents two representations that are useful for
answering queries about probabilistic models: probability
monads and measure terms. Figure 1 shows the translations
involved.

1. A user writes a model and a query using a domain-
specific, probabilistic language. In this paper, we take
the language to be the stochastic lambda calculus that is
defined formally in Section 4. In practice, we would pre-
fer a richer language, e.g., one providing types, modules,
and either an explicit fixed-point operator or recursion
equations. Even in practice, however, stochastic lambda
calculus is a useful intermediate form.

2. We translate the model into a more restricted target
form: a value in the probability monad, or a measure
term. Section 4 gives a translation into the probability
monad, the semantics of which we explain in Section 3.
Section 6 gives a translation into measure terms.

155

3. We use the target form to answer the query. The prob-
ability monad can answer all three kinds of query; mea-
sure terms are designed to answer expectation queries
efficiently.

The probability monad is easy to implement in Haskell
(Section 5), so we could also use Haskell as an embedded
domain-specific language for probabilistic modeling. Effi-
cient implementation of measure terms is more difficult;
our current implementation is written in Objective Caml
in order to exploit mutable state (Pfeffer 2001).

3. Semantics of probability and the probabil-
ity monad

3.1. Measure theory

Both discrete and continuous probability are easily de-
scribed using measure theory; we borrow notation from
Rudin (1974). The values over which a probability dis-
tribution is defined are drawn from some space X. “Ob-
servable events” in an experiment are typically represented
by subsets of X. We call these subsets the measurable sets
of X, and we require that the entire space be measurable
and that the measurable sets be closed under complement
and countable union, i.e., that the measurable sets form a
σ-algebra. The classical definition of a measurable function
is a function from X to a topological space (e.g., R) such
that the inverse images of open sets are measurable. We
restrict our attention to functions between measure spaces
and define the measurable functions as those such that in-
verse images of measurable sets are measurable; that way
the composition of measurable functions is measurable. Fi-
nally, a measure is a function µ that maps each measurable
set to a real number in the range [0,∞] and that is countably
additive. That is, if {Ai} is a disjoint countable collection
of measurable sets, µ(

⋃
i
Ai) =

∑
i
µ(Ai). A probability dis-

tribution is a measure such that µ(X) = 1. We use Greek
letters ν and µ to stand for measures.

Abstract integration plays a significant role in probability.
If f is a real-valued, measurable function on a measurable
space X with measure µ, and if A is a measurable subset
of X, we write

∫
A
f dµ for the Lebesgue integral of f over

set A. If e is an expression in which x appears free, we often
write

∫
A
e dµ(x) instead of

∫
A
(λx.e) dµ.

3.2. Queries

We define our queries in terms of measure theory and ab-
stract integration. The simplest query to define is expecta-
tion. If we have a probability distribution ν over space X,
then the expectation of a function h is

∫
X

h dν.
A support of a distribution is a measurable set outside

which the distribution is zero. A set S is a support of a
distribution ν if for any measurable set A, ν(A) = ν(A∩S).
In the language of real analysis, S is a support of ν iff ν is
“concentrated on S.” A good support can make it easier to
compute expectations, by exploiting

∫
X

h dν =
∫

S
h dν.

There are many ways to formulate sampling. We could
define a sampling as a function from a probability distribu-
tion to an infinite sequence of values, but we prefer to de-
fine sampling directly in terms of measure theory. Accord-
ingly, we say that a measurable function s : [0, 1]→ X is a
sampling function for ν if for any measurable set A ⊆ X,

ν(A) = µ(s−1(A)), where µ is the Lebesgue measure, which
describes uniform distributions. We use this formulation
for its practical value: if you give us a way of sampling uni-
formly on the unit interval, by applying s we’ll give you a
way of sampling from the probability distribution ν. The
equation implies that if r is drawn uniformly from the unit
interval, the probability that s(r) ∈ A is the same as the
probability that r ∈ s−1(A).

3.3. The probability monad

It has long been known that probability distributions form a
monad (Lawvere 1962; Giry 1981; Jones and Plotkin 1989).
In this section, we recapitulate some previous work, dis-
cussing the relationship of the monad operations to proba-
bility. The monadic bind operation, in particular, provides
much of the functionality one needs to create interesting
probability distributions for use in models. In Section 5,
we extend the probability monad with additional opera-
tions that support queries. Throughout the paper, rather
than use category-theoretic notation, we write return for
the unit operation and >>= for bind (monadic extension).
This notation will be more familiar to Haskell programmers
and to readers of Wadler (1992).
The denotation of the unit operation is simplicity itself:

return x stands for a distribution—that is, a measure—
which assigns unit probability to any measurable set con-
taining x and zero probability to any measurable set not
containing x:

M[[return x]](A) =

{
1, if x ∈ A
0, if x /∈ A.

This measure is sometimes called the “unit mass concen-
trated at x.” It enjoys the property that for any measurable
function f , ∫

X

f dM[[return x]] = f(x). (1)

The proof appeals directly to the definition of Lebesgue
integration. Property 1 plays a key role in the proofs of the
monad laws for probability measures.
To motivate the definition of monadic bind, we appeal to

conditional probability. If d denotes a probability measure
over space X and k denotes a function from values in X
to probability measures over space Y , then k may be inter-
preted as defining a “conditional probability of Y given X.”
Because d denotes the probability of X, applying the chain
rule says that the joint probability of X and Y is equal to
the probability of X times the conditional probability of Y
given X. We can get the probability of Y by integrating
over X. Since we wish d >>= k to denote the probability
of Y , we define

M[[d >>= k]](A) =

∫
X

M[[k(x)]](A) dM[[d]](x).

The notation may be confusing; the integral uses the
measure M[[d]], and the function being integrated over is
λx.M[[k(x)]](A).
The following property of monadic bind plays a signifi-

cant role in several of our proofs:∫
Y

g(y)dM[[d >>= k]](y) =∫
X

∫
Y

g(y)dM[[k(x)]](y) dM[[d]](x)
(2)

156

Given properties 1 and 2, it is straightforward to prove that
the definitions of return and >>= satisfy the monad laws.
To create some interesting distributions, we need at least

one more operation in our monad. The choose function
is a two-argument version of the dist used in Section 2.1.
Probabilistic choice is linear combination of measures:

M[[choose p d1 d2]](A) = p ·M[[d1]](A)+ (1− p) ·M[[d2]](A),

where 0 ≤ p ≤ 1 and the · symbol stands for multiplica-
tion. choose suffices to create any distribution with finite
support. Creating other kinds of distributions, including in-
teresting continuous distributions, would require additional
operations. (One can also create continuous distributions
by taking limits of discrete distributions with finite sup-
port.)
It is easy to show by induction on the structure of the

monad that any value created using return, >>=, and
choose denotes a probability measure; the only interesting
step uses property 2 with g(y) = 1.

3.4. Probability mass and density functions

Although it is possible to work directly with probability
measures, it is often easier to work with functions that map
values to their probability or probability density.
Any nonnegative, Lebesgue integrable function f defines

a measure, because if µ is a bounded measure, then the
function ν defined by ν(A) =

∫
A
f dµ is also a measure.

Furthermore, for any measurable A,
∫

A
g dν =

∫
A
g · f dµ.

This theorem plays a significant role in the proof of the
associativity law for the probability monad.
Even better, many measures can be described by a func-

tion like f . The Radon-Nikodym theorem says that if ν is
bounded and if µ(A) = 0 implies that ν(A) = 0 (i.e., ν is
absolutely continuous with respect to µ), then there exists a
nonnegative integrable f such that ν(A) =

∫
A
f dµ. In this

case, we write the function f as ν; ν is the Radon-Nikodym
derivative of ν.
Most implementations of probability use functions such

as ν; this use is justified when the measure ν has a Radon-
Nikodym derivative with respect to an underlying mea-
sure µ. Whether probability is “discrete” or “continuous”
depends on the underlying measure.

• For discrete probability, countable sets are measurable,
and the appropriate measure µ is the counting measure.
This measure is useful for countable spaces; the measure
of a set is the number of elements it contains. Because
the counting measure assigns measure zero only to the
empty set, every discrete probability distribution has a
Radon-Nikodym derivative, i.e., every such distribution
can be represented as a probability-mass function f that
assigns a nonnegative probability to each element of X
and which satisfies

∫
X

f dµ = 1. When using the count-

ing measure, we may use a
∑

symbol instead of the

integral:
∫

A
f dµ =

∑
xi∈A

f(xi).

• For continuous probability over real variables, which may
model such processes as queueing or radioactive decay,
the appropriate measure is the Lebesgue measure on real
numbers. The Lebesgue measure of an interval is the
length of the interval; see Rudin (1974) for an explana-
tion of how to extend this measure to a much larger class
of sets. Provided it assigns zero probability to sets of

Lebesgue measure zero, a continuous probability distri-
bution ν can be represented as an integrable function ν
that assigns a nonnegative probability density to each
point of X and which satisfies

∫
X

ν du = 1. Many inter-
esting continuous distributions fall into this class.

• For computing probabilities over infinite data structures,
neither the counting measure nor the Lebesgue measure
is necessarily useful. For example, if we consider infi-
nite sequences of flips of a fair coin, there are uncount-
ably many such sequences, and the probability of any
particular sequence is zero, so the counting measure is
useless. To know what questions we can sensibly ask
about infinite data structures, we need to know what
are the measurable sets. A good place to start is the
smallest σ-algebra containing the the sets Ux defined by
Ux = {y | x � y}, where x is finite. Subject to some tech-
nical conditions, this is the Borel algebra of the Scott
topology on a partially ordered set (Smyth 1983). We
can use probability measures over this σ-algebra to an-
swer such questions as “what is the probability that a
sequence begins with three consecutive heads?” It is not
clear to us when Radon-Nikodym derivatives (mass or
density functions) exist for these kinds of measures.

Because it is often easier to work with probablity mass
functions instead of measures, we give definitions of the
monad operations in terms of these functions. These defi-
nitions apply only to discrete probability.

M[[return v]](x) =

{
1, if x = v
0, if x �= v

M[[d >>= k]](x) =
∑

v
M[[d]](v) ·M[[k(v)]](x)

M[[choose p d1 d2]](x) = p ·M[[d1]](x) + (1− p) ·M[[d2]](x)

4. A stochastic lambda calculus and its se-
mantics

Here we present a formal calculus for expressing probability
distributions, and we give a denotational definition using
the probability monad. To simplify the presentation, we
use pairs instead of general products, binary sums instead
of general sums, and binary choice (choose) instead of the
general dist.

e ::= x | v | λx.e | e1 e2 | let x = e′ in e
| choose p e1 e2

| (e1, e2) | e.1 | e.2
| L e1 | R e2 | case e el er

The case expression may need explanation; e is an expres-
sion of sum type, which is either left (L v) or right (R v).
If left, we apply el to the carried value; otherwise we apply
er. Our case is analogous to the either function found in
the standard Haskell Prelude.
In our semantics, the probability monad is a type con-

structor M , together with unit, bind, and choose opera-
tions. If X is a type, M X is the type of probability
measures over X. Semantically, we wish to limit our at-
tention to measures that restrict to continuous evaluations,
so that M X is a probabilistic powerdomain (Jones and
Plotkin 1989). In Figure 2, we use the probability monad
to define the semantics of the stochastic lambda calculus.
By using suitable domains with the translation in Figure 2,
we can make a denotational semantics for the stochastic

157

P [[x]]ρ = return (ρ x)
P [[v]]ρ = return v
P [[λx.e]]ρ = return (λv.P [[e]]ρ{x �→ v})
P [[let x = e′ in e]]ρ = P [[e′]]ρ >>= λv.P [[e]]ρ{x �→ v}
P [[e1 e2]]ρ = P [[e1]]ρ >>= λv1.P [[e2]]ρ >>= λv2.v1v2

P [[(e1, e2)]]ρ = P [[e1]]ρ >>= λv1.P [[e2]]ρ >>= λv2.return (v1, v2)
P [[e.1]]ρ = P [[e]]ρ >>= (return ◦ fst)
P [[e.2]]ρ = P [[e]]ρ >>= (return ◦ snd)
P [[choose p e1 e2]]ρ = choose p (P [[e1]]ρ) (P [[e2]]ρ)
P [[L e]]ρ = P [[e]]ρ >>= (return ◦ Left)
P [[R e]]ρ = P [[e]]ρ >>= (return ◦ Right)
P [[case e el er]]ρ = P [[e]]ρ >>= either (λv.P [[el]]ρ >>= λf.f v) (λv.P [[er]]ρ >>= λf.f v)

Figure 2: Translation of stochastic calculus into the probability monad

lambda calculus (Jones 1990, Chapter 8). This translation
has two significant properties:

• The denotations of expressions are not the same kinds of
objects that appear in environments. Expressions denote
probability distributions, but environments bind identi-
fiers to values, not to distributions.

• The denotation of a lambda abstraction of type a -> b

is a function from values of type a to probability distri-
butions over values of type b.

These properties, as well as the rest of the translation, are
what you would expect to find in a monadic semantics of
a call-by-value language with imperative features, except
that we use the probability monad instead of a state or I/O
monad. We expect that an analogous lazy semantics should
also exist, but we have not explored that avenue.
Denotational definitions are out of fashion. Why don’t

we have a syntactic theory with an operational seman-
tics? Because a denotational definition makes it easier to
show how the mathematical foundations of probability ap-
ply to the semantics of probabilistic languages. Our de-
notational definitions also correspond closely to the struc-
tures of our implementations. It is a drawback that a
reader has to work harder to see that the denotation of
(λx.x − x)(choose 1

2
0 1) is the unit mass concentrated

at 0. In other words, when reducing lambda terms, it is not
permissible to duplicate a redex.

5. Probability monads in Haskell

Using Haskell, we have implemented the probability monad
for discrete distributions. We have taken advantage of
Haskell’s system of type and constructor classes to pro-
vide three specialized implementations: one for each kind
of query.
The probability monad provides choose; it inherits

return and >>= from class Monad. For simplicity, we
represent probabilities as double-precision floating-point
numbers. By using Haskell’s type classes, we could support
more general representations, but the details would be
distracting.

〈probability monads〉≡
type Probability = Double -- number from 0 to 1

class Monad m => ProbabilityMonad m where

choose :: Probability -> m a -> m a -> m a

Like any other monad, the probability monad needs at
least one operation that observes what is inside a monadic
computation (Hughes 1995, §5). The obvious observations
are our three queries. Rather than require one implemen-
tation to support all three queries, however, we structure
the code so that we can provide three different implemen-
tations, one for each kind of query.
Since distributions created with this interface have count-

able support, it is easiest to represent a support of a dis-
tribution by a set of elements. To make the code more
readable, we use lists instead of sets, and we permit that
some elements appear more than once; at need, Haskell
programmers can eliminate duplicates using List.nub.

〈probability monads〉+≡
class ProbabilityMonad m => SupportMonad m where

support :: m a -> [a]

-- support (return x) = [x]

-- support (d >>= k) =

-- concat [support (k x) | x <- support d]

-- support (choose p d d’) =

-- support d ++ support d’

The comments show algebraic laws that support must sat-
isfy; the support monad is a simple extension of the list
monad. In the law we give for choose, the value support

(choose p d d’) does not depend on p, even when p is 0
or 1. Indeed, if we remove p from the signature of choose,
we get the well-known nondeterminism monad.
Our law for choose is sound, and we have chosen it for its

simplicity, but it is really an oversimplification. In practice
it is important to add the side condition 0 < p < 1 and to
add laws to cover the cases p = 0 and p = 1. Probabilities of
0 and 1 can arise in real models from, e.g., idiomatic trans-
lations of Bayesian networks, and cutting down the support
as much as possible can save significant computation.
It is easy to show that any implementation of support

satisfying the laws above produces a list of values that,
when taken as a set, forms a support for the measure de-
noted by the monadic value. The proof relies on the dis-
creteness of the measure; the inductive hypothesis is that
M[[d]](x) > 0 implies x ∈ support d.
For simplicity, we define expectation only of real-valued

functions. It is not difficult to define a version of the ex-
pectation monad that can compute the expectation of any
function whose range is a vector space over the reals.

158

The expectation monad and its laws are as follows.

〈probability monads〉+≡
class ProbabilityMonad m => ExpMonad m where

expectation :: (a -> Double) -> m a -> Double

-- expectation h (return x) = h x

-- expectation h (d >>= k) = expectation g d

-- where g x = expectation h (k x)

-- expectation h (choose p d d’) =

-- p * expectation h d +

-- (1-p) * expectation h d’

Using property 2 from Section 3.3, it is easy to prove that
any implementation of expectation satisfying these laws
computes expectation as defined by the measure.
Stipulating true real-number arithmetic, with infinitely

many bits of precision, we present laws for a sampling func-
tion. If d is a distribution, fst ◦ sample d is a sampling
function in the sense of Section 3.2.

〈probability monads〉+≡
-- sample (return x) r = (x, r)

-- sample (d >>= k) r =

-- let (x, r’) = sample d r in sample (k x) r’

-- sample (choose p d d’) r =

-- if r < p then sample d (r/p)

-- else sample d’ ((1-r)/(1-p))

The law for choose is the interesting law; it uses as many
bits of precision as are needed to compare r and p, then
renormalizes so that the remaining bits can be used for
further samples. The computation is like what happens
to the output of an arithmetic coder (Witten, Neal, and
Cleary 1987).
The proof of correctness of the sampling laws is the most

difficult proof in this paper. The key is finding a good
induction hypothesis: for any distribution d and any real
function f defined on the product space X ×R,∫

I

f(sample d r) dµ(r) =

∫
I

∫
X

f(x, r) dM[[d]](x) dµ(r),

where I is the unit interval and µ is Lebesgue measure.
From this hypothesis it is straightforward to show that
µ((fst◦sample d)−1(A)) =M[[d]](A), so that fst◦sample d
is a sampling function for M[[d]].
This definition of sampling would not be very useful in

an implementation, because it is based on a single random
number with arbitrarily many bits of precision. It is more
consistent with Haskell’s standard library to use a random-
number generator for sampling:

〈probability monads〉+≡
class ProbabilityMonad m => SamplingMonad m where

sample :: RandomGen g => m a -> g -> (a, g)

-- sample (return x) g = (x, g)

-- sample (d >>= k) g =

-- let (x, g’) = sample d g in sample (k x) g’

-- sample (choose p d d’) g =

-- let (x, g’) = random g in

-- sample (if x < p then d else d’) g’

Although we can give a denotational semantics to the
sampling monad purely in terms of sampling functions, the
sampling monad has an appealing operational interpreta-
tion as a monad of random experiments. If m is in the class
SamplingMonad, then a value of type m α represents an
experiment that returns a value of type α. The unit com-
putation return x represents the experiment that always
returns x. A computation produced by bind, d >>= k,

represents the experiment that begins by running d to gen-
erate an intermediate value, applies k to the value to get
a second experiment, and returns the result of the second
experiment. choose p d1 d2 represents the experiment that
runs d1 with probability p and d2 with probability 1− p.
The algebraic laws above lead directly to implementa-

tions of the monads. Additional notation is needed to make
legal Haskell; the code appears in Appendix A.

5.1. Performance

The monads above compute support and sampling about
as efficiently as possible, asymptotically speaking. The ex-
pectation monad, by contrast, is inherently inefficient, and
for some terms in the stochastic lambda calculus, it may
perform exponentially worse than other algorithms. The
problem with the monadic computation of expectation is
that when we compute expectation h d, we don’t have
any information about the structure of the function h. We
must therefore apply h to every value in its domain,1 at
a cost proportional to the size of that domain. But if h
is defined over a product domain, it may be possible to
compute the expectation of h at a lower cost, depend-
ing on the structure of h. For example, if the domain
of h is the product space X × Y , and if there exist func-
tions h1,i and h2,i such that h(x, y) =

∑
i
h1,i(x)h2,i(y),

and if µ can be similarly split, then
∫

X×Y
h dµ(x, y) =∑

i
(
∫

X
h1,i(x) dµ1(x)) · (

∫
Y
h2,i(y) dµ2(y)). The cost of

computing the left-hand side is O(|X × Y |), but the cost
of computing the right-hand side is O(|X|+ |Y |). If we are
computing the expectation of a function of a large num-
ber of variables (e.g., the expected number of heads in a
sequence of 10 coin flips), the monad can take exponential
time to solve a linear problem.
Many functions over which we might wish to take expec-

tations have a structure that can be exploited. For example,
in a probabilistic grammar for natural language, a model
might say that a sentence is made up of a noun phrase
and a verb phrase. In many models, such as probabilistic
context-free grammars (Charniak 1993), the two phrases
define independent probability distributions, so the prob-
ability distribution over the string generated by the verb
phrase does not depend on that generated by the noun
phrase. If we want to compute the expected number of
words in a sentence, h is the number of words in the noun
phrase plus the number of words in the verb phrase, and
it has the structure required. Even if the noun phrase and
verb phrase are not quite independent, but the verb phrase
is influenced by the first word of the noun phrase, the verb
phrase is still conditionally independent of the remaining
words of the noun phrase given the first word, and the
independence can be exploited. The probability monad
cannot exploit the independence, because it must produce
the entire sentence, including both phrases, before it can
apply h.

1Actually it suffices to apply h only to those values that are
in the support of d. This refinement is important in practice,
but it does not affect the asymptotic costs.

159

t ::= t1 × t2 | t1 + t2 |
∑

y::Y
t | 〈φ : w〉

T [[t1 × t2]]Γ(ρ) = T [[t1]]Γ(ρ) · T [[t2]]Γ(ρ)
T [[t1 + t2]]Γ(ρ) = T [[t1]]Γ(ρ) + T [[t2]]Γ(ρ)
T [[

∑
y::Y

t]]Γ(ρ) =
∑

v∈Y
T [[t]]({y :: Y } � Γ)(ρ{y �→ v})

T [[〈φ : w〉]]Γ(ρ) = w · sat(φ, ρ)

sat(φ, ρ) =

{
1, if formula φ is satisfied by the assignment ρ
0, otherwise

The bound variable in a sum must be distinct from other variables; the union {y :: Y }�Γ
is defined only if variable y does not appear in any pair in Γ.

Figure 3: Syntax and semantics of measure terms

6. A term language for computing discrete
expectation

The probability monad leads to elegant implementations of
our three queries, but a monadic computation of expecta-
tion over a product space can take time exponential in the
number of dimensions in the space. The rest of this paper
is devoted to a different abstraction: measure terms. Us-
ing measure terms, we can expose the structure of h and
rewrite sums (integrals) over product spaces into products
of sums, thereby reducing the cost of computing the expec-
tation of h.
Measure terms define measures over product spaces. The

simplest kind of term is a weighted formula 〈φ : w〉, which is
a generalization of unit mass; it assigns a real, nonnegative
weight w to a set in the product space. The set is defined by
a formula φ, which is simply a predicate. The angle brack-
ets and colon serve only to delimit the weighted formula;
they have no semantic significance. Measure terms may be
multiplied and added, and we can also sum over variables.
The syntax of measure terms is as follows:

t ::= 〈φ : w〉 | t1 × t2 | t1 + t2 |
∑

x::X
t

We write terms assuming that × binds more tightly than +,
and the scope of

∑
extends as far to the right as possible.

Our notation has one subtlety; the colons in
∑

x::X
indicate

that this summation symbol is syntax. When we mean sum-
mation in a semantic domain, over a measurable space X,
we write

∑
x∈X

.
One reason to use measure terms is be able to choose the

order in which we do sums. We therefore use a representa-
tion of product spaces in which we identify dimensions by
name, not by the way they are ordered. In particular, we
represent an n-dimensional product space as a set of pairs
xi :: Xi, where xi is a name and Xi is a measurable space.
We represent a value in this product space by an environ-
ment mapping names to values such that the domain of the
environment is {xi | 1 ≤ i ≤ n}. Every name defined in the
environment identifies one dimension of the product space.
A measure term denotes a measure over a product space,

but its denotation may depend on context, i.e., what prod-
uct space we are interested in. We therefore specify a
product space when giving the semantics of a term. By
analogy with type environments, we write this product
space as Γ = {xi :: Xi | 1 ≤ i ≤ n}. We write a value in
the product space as ρ = {x1 �→ v1, . . . , xn �→ vn}. Fig-

ure 3 gives the meanings of terms. The function T [[t]]Γ

defines a probability-mass function on Γ; to get a mea-
sure, we integrate using the counting measure. That is,
T [[t]]Γ(A) =

∑
ρ∈A

T [[t]]Γ(ρ). The context Γ plays no role in

the evaluation of T , but we need it to prove that our trans-
lation of stochastic lambda calculus into measure terms is
equivalent to our translation into the probability monad.
Measure terms obey useful algebraic laws:

• The term 〈true : 1〉 is a unit of term product ×, and
〈false : w〉 is a unit of term addition +.

• Term product × and sum + obey associative, commuta-
tive, and distributive laws.

• We can rename variables in sums; the x in
∑

x::X
is a

binding instance.

• We can interchange sums over different variables.

• We can sometimes move terms outside sums, i.e., we have∑
x::X

t1×t2 = t1×
∑

x::X
t2, provided x is not free in t1.

The soundness of these laws follows immediately from the
definition of T .
The laws make it possible to implement variable elimina-

tion, which is a code-improving transformation that reduces
work by moving products outside sums. A full treatment
of variable elimination is beyond the scope of this paper,
but we can state the idea briefly. If each of two terms
t1 and t2 contains free variables that do not appear free in
the other, the laws enable us to convert a sum of products
to a product of sums. For example, if x1 is not free in t2
and x2 is not free in t1, then

∑
x1::X1

∑
x2::X2

t1 × t2 =

(
∑

x1::X1
t1) × (

∑
x2::X2

t2). The cost of computing T on

the left-hand side is O(|X1| · |X2|), but the cost of comput-
ing T on the right-hand side is O(|X1| + |X2|). Rewriting
a term to minimize the cost of computing T is an NP-hard
problem, but there are heuristics that work well in practice
(Jensen 1996).

6.1. Measure terms for probability

To represent a probability distribution, we use a measure
term with a distinguished free variable, arbitrarily called ∗
(pronounced “result”). Figure 4 shows how to translate
a term in the stochastic lambda calculus into a measure
term with the additional free variable ∗. We have left the
domains of variables out of the sums; the domains are com-
puted using the support function S . Figure 4 uses two
metanotations that may require explanation. We write sub-
stitution using superscripts and subscripts; tex stands for

160

E [[x]]ρ = 〈∗ = x : 1〉
E [[v]]ρ = 〈∗ = v : 1〉
E [[λx.e]]ρ = 〈∗ = λv.E [[e]]ρ{x �→ {v}} : 1〉
E [[let x = e′ in e]]ρ =

∑
x

(E [[e′]]ρ)x∗ × E [[e]]ρ{x �→ S [[e′]]ρ}

E [[e1 e2]]ρ =
∑
xf

∑
xa

(E [[e1]]ρ)
xf
∗ × (E [[e2]]ρ)

xa∗ ×

∏
vf∈S[[e1]]ρ,va∈S[[e2]]ρ

(
(vf va × 〈xf = vf ∧ xa = va : 1〉) + 〈¬(xf = vf ∧ xa = va) : 1〉

)

E [[choose p e1 e2]]ρ = (E [[e1]]ρ × 〈true : p〉) + (E [[e2]]ρ × 〈true : 1− p〉)
E [[(e1, e2)]]ρ = (E [[e1]]ρ)

∗.1
∗ × (E [[e2]]ρ)

∗.2
∗

E [[e.1]]ρ =
∑
xnew

(E [[e]]ρ)(∗,xnew)
∗

E [[e.2]]ρ =
∑
xnew

(E [[e]]ρ)(xnew,∗)
∗

E [[L e]]ρ = (E [[e]]ρ)left ∗
∗ × 〈isLeft ∗ : 1〉

E [[R e]]ρ = (E [[e]]ρ)right ∗
∗ × 〈isRight ∗ : 1〉

E [[case e el er]]ρ = E [[either el er e]]ρ

Here S is the support function, which gives us the set of possible values to which an expression e could evaluate; the
environment ρ is used only to compute support. The variables xnew, xf , and xa are unique, fresh variables. We notate
substitution using superscripts and subscripts; tex stands for the measure term t with expression e substituted for variable x.
Functions either, left, right, isLeft, and isRight are predefined functions that support sum types; the name either

represents a literal value, not a variable.

Figure 4: Translation of stochastic calculus into terms

the measure term t with expression e substituted for vari-
able x. In the rule for application, the product symbol

∏
is

a metalanguage symbol and not part of the measure-term
language; it stands for a large multiplication. This mul-
tiplication is a device for applying functions to get mea-
sure terms. If we write the multiplication as t =

∏
· · ·,

then given any record ρ that maps xf to vf and xa to va,
T [[t]]Γ(ρ) = T [[vf va]]Γ(ρ).
Making variable elimination work effectively on the re-

sults of the translation requires two steps not shown in Fig-
ure 4: introducing multiple variables for product spaces
and manipulating the translation of choose to keep inde-
pendent terms separate.
Because the single free variable ∗ often stands for a

value in a product space, we need a way to “split up”
the variable into its constituent parts. The product spaces
Γ � {x :: X1 ×X2} and Γ � {x1 :: X1, x2 :: X2} are isomor-
phic; we take them to be equivalent, and we use the equality

T [[t]](Γ � {x :: X1 × X2})(ρ{x 	→ (v1, v2)}) =
T [[t(x1,x2)

x]](Γ � {x1 :: X1, x2 :: X2})(ρ{x1 	→ v1, x2 	→ v2})

to change variables within terms. This equality supports
the following additional algebraic law:∑

x

t =
∑
x1

∑
x2

t(x1,x2)
x .

In the translation of choose shown in Figure 4, terms
E [[e1]]ρ and E [[e2]]ρ are combined using addition. As a con-
sequence, even if each of the terms contains free variables
not found in the other, we will not be able to move the
addition outside sums over those free variables. In our im-
plementation, we apply the following law to the translation

of choose:

t× 〈true : p〉+ t′ × 〈true : 1− p〉 =∑
xnew::Bool

(t× 〈xnew : p〉+ 〈¬xnew : 1〉)×
(t′ × 〈¬xnew : 1− p〉+ 〈xnew : 1〉).

On the right-hand side, we now have a chance to move other
sums inside

∑
xnew

.

6.2. Equivalence of two translations

A term in the stochastic lambda calculus denotes the same
probability measure whether we compute the measure using
the probability monad or using measure terms. This claim
is central to our contribution, linking up elegant techniques
for defining languages with efficient techniques for proba-
bilistic reasoning.
The proof requires some technicalities associated with de-

notations of functions. The problem is this: in the P trans-
lation, the denotation of a lambda abstraction is made using
a function returning a value in the probability monad; in
the E translation, the denotation of a lambda abstraction is
made using a function returning a measure term; to prove
them equivalent, we need to reason about functions return-
ing probability measures. We therefore have three different
spaces of values, which we call M (monadic) space, T (term)
space, and V (value) space. To show the two translations
are equivalent, we need to be able to map both M space
and T space into V space.
We define the mappings we need using a type-indexed

family of transformations we call lift . If v is an atomic,
zero-order value (integer, string, etc), then lift F v = v.
If v is a pair, then lift F (v1, v2) = (lift F v1, lift F v2),

161

and similarly for sum types. Finally, if v is a function, we
define lift such that (lift F v) (lift F v′) = F(v v′). The lift
transformation is closely related to the reify transformation
used in type-directed partial evaluation (Danvy 1996).
Having defined lift , we extend it to expressions, formulas,

and environments by saying that lift F e is the expression
obtained by replacing all literal values in e with their lifted
forms, and similarly for formulas and environments. In par-
ticular, when λx.e is syntax, lift F (λx.e) = λx.lift F e.
Finally, we have to adjust the definitions of M and T .

M[[return v]](x) =

{
1, if x = lift M v
0, if x �= lift M v

M[[d >>= k]](x) =
∑

v
M[[d]](lift M v) ·M[[k(v)]](x)

T [[〈φ : w〉]]Γ(ρ) = w · sat(lift T φ, ρ)

With the new definitions, a lambda term e that is trans-
lated via the probability monad has literal values that live
in M space, a lambda term that is translated via measure
terms has literal values that live in T space, but the denota-
tions of both are probability measures that apply to values
in V space.
With lift , we have the machinery we need to state that

the two translations are equivalent. The proof is by struc-
tural induction on lambda terms, and the induction hy-
pothesis is that if em and et are two lambda terms such
that lift M em = lift T et, then

M(P [[em]]ρ)(v) =

T (E [[et]]ρ)(Γρ � {∗ :: Y })((lift M ρ){∗ �→ v})

where Γρ gives the names and types of variables in the
domain of ρ, and Y is the type of e (and also the measurable
space from which v is drawn). It follows that if e is a lambda
term in which the only literals are zero-order literals such
as integers, we can translate it either way and get the same
probability distribution. A lemma that applies frequently
to the proof is that adding variables to the environment of
a term doesn’t matter:

T [[t]]Γ(ρ) = T [[t]](Γ ∪ {y})(ρ{y �→ v})

provided y does not appear in Γ, in the domain of ρ, or free
in t. In this lemma, v is arbitrary.

6.3. Expectation

Using measure terms, we can speed up the computation of
the expectation of a function h, provided we expose the
structure of h to the variable-elimination algorithm. Our
implementation doesn’t compute expectations of general
functions expressed in lambda terms; it computes expec-
tations only of functions that can be expressed in the form
h(v) = w1 · sat(φ1, {∗ �→ v}) + · · · + wn · sat(φn, {∗ �→
v}). For such a function, we define expectation′ h t =

T [[
∑

∗(〈φ1 : w1〉+ · · ·+ 〈φn : wn〉)]]{}{}. Using the equiv-
alence of the previous section, it is not hard to show that
for a suitable closed lambda-term e,

expectation
′ h (E [[e]]{}) = expectation h (P [[e]]{}).

Using variable elimination on the left-hand side can produce
exponential speedups for some functions h.

7. Related work

Monads are used both in the study of language features
and in the implementation of programming languages;
Wadler (1992) introduces and motivates the topic. Mon-
ads come to us from category theory, and category theorists
have long been aware of the monadic structure of probabil-
ity (Lawvere 1962; Giry 1981). The support and sampling
monads are also well known in the programming commu-
nity, especially the support monad, because it describes
nondeterministic choice. It appears that the expectation
monad is not well known, perhaps because of its inherent
inefficiency.
A tool called QuickCheck uses the sampling monad to

generate random values for testing functional programs
(Claessen and Hughes 2000). QuickCheck’s probabilistic-
choice operator, although also called choose, is somewhat
different from ours; it produces an integer distributed uni-
formly over a specified range. Either version of choose can
be simulated using the other. QuickCheck also provides a
frequency function, which is analogous to dist. Claessen
and Hughes (2000) also presents generator transformers,
which use existing generators to build new ones in ways that
cannot be done using monadic bind alone. It is not obvious
how the idea relates to the general probability monad.
Substantial effort has been devoted to developing Scott-

style domain theory that could help specify semantics
of probabilistic languages. Saheb-Djahromi (1980) shows
the complete-partial-order structure of probability distri-
butions on a domain. Jones and Plotkin (1989) uses eval-
uations rather than measures to build probabilistic pow-
erdomains. Jones’s (1990) doctoral thesis is slightly more
accessible to the amateur; Section 1.4 provides a brief guide
to the literature.
It would be pleasant to extend our calculus with recur-

sive functions, recursion equations, or a fixed-point oper-
ator, but to give a careful semantics to such an extended
calculus would require domain theory, category theory, and
analysis that are beyond the scope of this paper. The par-
ticularly sticky bits have to do with permitting probability
distributions over functions, which we wish to do in our
models. We have identified two related languages that sup-
port recursion.
Saheb-Djahromi (1978) presents a probabilistic version

of LCF, in which expressions of base types (integer or
Boolean) denote probability distributions but expressions
of function type denote functions, not distributions over
functions. The language includes both call-by-name and
call-by-value abstraction constructs; only values of base
types may be passed to call-by-value functions. The pa-
per presents both denotational and operational semantics
and shows them equivalent.
Jones (1990), Chapter 8 presents a call-by-value language

that is much closer to ours. The major distinctions are
that the language includes a fixed-point operator and that
it has not one but two syntactic categories: expressions and
function expressions. Expressions denote probability distri-
butions; function expressions denote functions from values
to probability distributions. The syntax is structured such
that only function expressions can be applied, and the fixed-
point operator can be applied only to function expressions,
not to ordinary expressions. Using syntax whose meaning
corresponds to the monadic unit operation, every function
expression can be made into an ordinary expression, but

162

there is no reverse path. Thus, although the language does
support recursive functions, it is not possible to apply a
function that is stored in a tuple or passed as an argument.
The thesis presents both denotational and operational se-
mantics for the language and shows them equivalent. To
avoid difficulties with product spaces, the denotational se-
mantics uses evaluations, not measures, to represent prob-
ability distributions. Modulo this difference and our omis-
sion of recursive functions, the denotational semantics ap-
pears to be isomorphic to ours.
Benveniste et al. (1995) and Gupta, Jagadeesan, and

Panangaden (1999) discuss languages for the description
of concurrent probabilistic systems. Their work differs in
flavor from ours, since it combines the probabilistic specifi-
cation of stochastic behavior with unquantified, constraint-
based non-determinism. As a result, a program may or may
not define a single probability distribution. In our language,
there is only probabilistic non-determinism, and a program
defines a unique probability measure.
There is a significant body of work available on vari-

able elimination. Pearl (1988) popularized graphical mod-
els, including Bayesian networks, as well as the polytree
reasoning algorithm. Commercial reasoning systems com-
monly use the junction-tree algorithm of Lauritzen and
Spiegelhalter (1988). Zhang and Poole (1994) describes
a variable-elimination algorithm for Bayesian networks; Li
and d’Ambrosio (1994) presents an algebraic variation.
Dechter (1996) shows that the polytree and junction-tree
algorithms are also forms of variable elimination, and that
the variable-elimination framework unites probabilistic rea-
soning with a variety of other tasks such as constraint sat-
isfaction. Arnborg (1985) lays the graph-theoretic founda-
tions for variable elimination.
Most implementations of variable elimination seem to

be based on more specialized representations than we use.
For example, the basic unit of representation may be a
table that corresponds to a measure term of the form∑n

i=1
〈∧m

j=1πj = vij : wi〉, where π is a path x.k1.k2 . . . kn

and vij is a value or “don’t care.” The generality of mea-
sure terms significantly simplifies the implementation, and
it appears not to impose unacceptable efficiency costs.
Learning algorithms that use variable elimination often

combine it with memoization (frequently called “caching”
in the probabilistic-reasoning literature). We believe that
we can achieve similar performance gains, without introduc-
ing mutable state into an implementation, by introducing
let-binding for measure terms and by using hash-consing to
implement common-subexpression elimination.
Other researchers in probabilistic modeling have used

languages that resemble our stochastic lambda calculus.
Koller, McAllester, and Pfeffer (1997) presents a simple
Lisp-like language with a coin-toss function, giving it an op-
erational semantics based on sampling experiments. Mug-
gleton (2001) presents a similar extension to logic programs.
Luger and Pless (2001) proposes using a stochastic lambda
calculus, with a traditional reduction semantics, as a foun-
dation for probabilistic-modeling languages. Lambda terms
are reduced to sets of (value, probability) pairs, and ad-
ditional rules are needed to distribute function applica-
tion over these sets; in our framework, the monadic bind
solves this problem. The paper argues that deBruijn in-
dices should make it easy to identify equal values and to
support memoization.

8. Discussion

We have elucidated connections between the measure-
theoretic basis of probability, monadic techniques for de-
scribing programming languages, and variable-elimination
techniques used for efficient probabilistic reasoning. Using
a monad to describe the stochastic lambda calculus is not
only entertaining—it reduces proof obligations. For exam-
ple, given our theorems about the various probability mon-
ads, we can take any probabilistic language, translate it into
the probability monad, and be sure sampling is consistent
with expectation. Using a monad enables us to separate
the structure of our semantic domain from the details of
any particular probabilistic language.
It is not clear whether we can retain these advantages

and also exploit the greater efficiency of measure terms.
We can create an instance of the probability monad that
produces measure terms, but the cost of the obvious algo-
rithm is proportional to the size of the product space. The
open question is whether we can create an instance of the
probability monad that produces measure terms at a cost
no greater than the cost of evaluating those terms after
variable elimination. Techniques inspired by type-directed
partial evaluation, which can produce abstract syntax for
native functions, might solve this problem (Danvy 1996).
Another challenge is to add recursion to our calculus.

From the point of view of the probability monad, this would
appear to present few difficulties. Suppose we wish to de-
fine a recursive function f = λx.e, where both f and x
appear free in e. The key is that when we consider the
meaning of e, f must stand for a function, not a probability
distribution over functions. It would therefore be difficult
to use the classical style or fixed-point combinator. It is
easy, however, to use a style that takes fixed points only
of syntactic lambda abstractions; we write fix f x e, with
P [[fix f x e]]ρ = fix(λw.λv.P [[e]]ρ{f �→ w, x �→ v}, where
fix (g) =

⊔∞
i=0

g(i)(⊥). Generalizing such a construct to mu-
tually recursive functions is straightforward (Appel 1992).
Jones (1990) explains why the fixed point exists.
Unfortunately it is not clear what to do with recursive

functions in the measure-term translation. Since it is not
practical to build and evaluate infinite measure terms, some
sort of approximation is necessary. Pfeffer and Koller (2000)
presents an approximation technique over probabilistic re-
lational knowledge bases, which can be expressed as infi-
nite measure terms. It remains to be seen how to extend
such techniques to arbitrary measure terms and how to ap-
proximate expressions involving higher-order and recursive
functions that produce measure terms.
Although our presentation of the probability monad is

general, as are our laws for sample and expectation, much
of the work in this paper is focused on discrete distribu-
tions with finite support. The moment we introduce recur-
sive functions, however, we can use the probability monad
to define distributions with uncountable support. For ex-
ample, there are uncountably many infinite sequences of
tosses of a fair coin. If we have a lazy variant of a stochas-
tic lambda calculus, or if we embed the probability monad
in Haskell, it is perfectly reasonable to write functions that
produce infinite data structures and to make queries over
them. Queries that depend only on finite sub-structures
(e.g., the the probability that the first ten tosses of a coin
come out heads) should be computable in finite time us-
ing lazy evaluation. We would like to extend our monadic

163

implementation to incorporate such infinite models and to
answer such queries effectively. The natural measurable
space over which such queries would make sense should be
the Borel sets of the Scott topology.
In the long term, we would like to explore Bayesian learn-

ing in a monadic framework. In the Bayesian paradigm, the
parameters p passed to choose are not known exactly, but
are themselves defined only by a probability distribution.
A Bayesian experiment consists of a model, a prior distri-
bution over parameters p, and a set of observations; the
result is a posterior distribution over the parameters. For
example, we could use Bayesian experiments to estimate the
probability that an aggressive driver runs a red light. To
incorporate the Bayesian approach into our monadic frame-
work, we would need to make the parameter p an expres-
sion, not a value. Such an extension might provide a useful
declarative foundation for an active area of machine learn-
ing.

Acknowledgments

Simon Peyton Jones helped unstick our discussions of mea-
sure terms and variable elimination. Bob Muller helped
us work out lift and guided us through the thickets of do-
main theory. We enjoyed many stimulating discussions with
members of the CS 252 seminar, especially Chung-chieh
Shan and Dylan Thurston. Jon Eddy, Simon Peyton Jones,
and Chung-chieh Shan provided helpful comments on the
manuscript. The anonymous referees not only directed us to
useful related work but also made suggestions that helped
us improve the paper significantly.
This work was supported by NSF grant CCR-0096069,

by an Alfred P. Sloan Research Fellowship, and by Harvard
University.

References

Appel, Andrew W. 1992. Compiling with Continuations.
Cambridge: Cambridge University Press.

Arnborg, Stefan. 1985. Efficient algorithms for combinato-
rial problems on graphs with bounded decomposability.
BIT, 25(1):2–23.

Benveniste, Albert, Bernard C. Levy, Eric Fabre, and Paul
Le Guernic. 1995. A calculus of stochastic systems for
the specification, simulation, and hidden state estima-
tion of mixed stochastic/nonstochastic systems. Theo-
retical Computer Science, 152(2):171–217.

Charniak, Eugene. 1993. Statistical Language Learning.
MIT Press.

Claessen, Koen and John Hughes. 2000 (September).
QuickCheck: a lightweight tool for random test-
ing of Haskell programs. Proceedings of the Fifth
ACM SIGPLAN International Conference on Func-
tional Programming (ICFP’00), in SIGPLAN Notices,
35(9):268–279.

Danvy, Olivier. 1996. Type-directed partial evaluation. In
Conference Record of the 23rd Annual ACM Sympo-
sium on Principles of Programming Languages, pages
242–257, New York, NY.

Dechter, Rina. 1996 (August). Bucket elimination: A uni-
fying framework for probabilistic inference. In Proceed-
ings of the 12th Conference on Uncertainty in Artificial
Intelligence (UAI-96), pages 211–219, San Francisco.

Giry, Michèle. 1981. A categorical approach to probability
theory. In Banaschewski, Bernhard, editor, Categorical
Aspects of Topology and Analysis, Vol. 915 of Lecture
Notes In Mathematics, pages 68–85. Springer Verlag.

Gupta, Vineet, Radha Jagadeesan, and Prakash Panan-
gaden. 1999 (January). Stochastic processes as concur-
rent constraint programs. In Conference Record of the
26th Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 189–202.

Hughes, John. 1989 (April). Why functional programming
matters. The Computer Journal, 32(2):98–107.

. 1995. The design of a pretty-printing library. In
Jeuring, Johan and Erik Meijer, editors, Advanced
Functional Programming, Vol. 925 of Lecture Notes in
Computer Science. Springer Verlag.

Jaakkola, Tommi S. and Michael I. Jordan. 1999. Varia-
tional probabilistic inference and the QMR-DT net-
work. Journal of Artificial Intelligence Research,
10:291–322.

Jensen, Finn V. 1996. An Introduction to Bayesian Net-
works. New York: Springer.

Jones, Claire. 1990 (July). Probabilistic Non-determinism.
PhD thesis, Department of Computer Science, Univer-
sity of Edinburgh. Also Laboratory for the Foundations
of Computer Science technical report ECS-LFCS-90-
105. Available online.

Jones, Claire and Gordon D. Plotkin. 1989. A probabilis-
tic powerdomain of evaluations. In Proceedings of the
Fourth Annual IEEE Symposium On Logic In Com-
puter Science, pages 186–195.

Jordan, Michael I., editor. 1998. Learning in Graphical
Models. Kluwer.

Koller, Daphne, David McAllester, and Avi Pfeffer. 1997.
Effective Bayesian inference for stochastic programs.
In Fourteenth National Conference on Artificial Intel-
ligence (AAAI), pages 740–747.

Lauritzen, Steffen L. and David J. Spiegelhalter. 1988. Lo-
cal computations with probabilities on graphical struc-
tures and their application to expert systems. Journal
of the Royal Statistical Society, pages 157–224.

Lawvere, F. William. 1962. The category of probabilistic
mappings. Unpublished.

Li, Zhaoyu and Bruce d’Ambrosio. 1994. Efficient inference
in Bayes nets as a combinatorial optimization prob-
lem. International Journal of Approximate Reasoning,
11(1):55–81.

Luger, George and Dan Pless. 2001. A stochastic
λ-calculus. Technical Report TR-CS-2001-04, Depart-
ment of Computer Science, University of New Mexico.

Mahoney, Suzanne M. and Kathryn Blackmond Laskey.
1998 (July). Constructing situation specific belief net-
works. In Proceedings of the 14th Conference on Uncer-
tainty in Artificial Intelligence (UAI-98), pages 370–
378. Morgan Kaufmann.

Muggleton, Stephen. 2001. Stochastic logic programs. Jour-
nal of Logic Programming. Accepted subject to revi-
sion.

164

Pearl, Judea. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. San Mateo,
CA: Morgan Kaufmann.

Pfeffer, Avi. 2001 (August). IBAL: A probabilistic ratio-
nal programming language. In Seventeenth Interna-
tional Joint Conference on Artificial Intelligence (IJ-
CAI), pages 733–740, Seattle.

Pfeffer, Avi and Daphne Koller. 2000 (July). Semantics
and inference for recursive probability models. In Pro-
ceedings of the 7th Conference on Artificial Intelligence
(AAAI-00), pages 538–544, Menlo Park, CA.

Ramsey, Norman. 1994 (September). Literate programming
simplified. IEEE Software, 11(5):97–105.

Rudin, Walter. 1974. Real and Complex Analysis. Series
in Higher Mathematics. Second edition. New York:
McGraw-Hill.

Saheb-Djahromi, N. 1978 (September). Probabilistic LCF.
In Winkowski, Józef, editor, Proceedings of the 7th
Symposium on Mathematical Foundations of Computer
Science, Vol. 64 of Lecture Notes in Computer Science,
pages 442–451. Springer.

. 1980 (September). CPO’s of measures for nondeter-
minism. Theoretical Computer Science, 12(1):19–37.

Smyth, Michael B. 1983 (July). Power domains and predi-
cate transformers: A topological view. In Dı́az, Josep,
editor, Automata, Languages and Programming, 10th
Colloquium (ICALP-83), Vol. 154 of Lecture Notes in
Computer Science, pages 662–675, Barcelona, Spain.

Wadler, Philip. 1992 (January). The essence of functional
programming (invited talk). In Conference Record of
the 19th Annual ACM Symposium on Principles of
Programming Languages, pages 1–14. New York, NY:
ACM Press.

Witten, Ian H., Radford M. Neal, and John G. Cleary.
1987 (June). Arithmetic coding for data compression.
Communications of the ACM, 30(6):520–540.

Zhang, Nevin L. and David Poole. 1994. A simple approach
to Bayesian network computations. In Tenth Biennial
Canadian Artificial Intelligence Conference.

A. Implementations of probability monads

These implementations are derived from the algebraic laws
in Section 5, using techniques explained by Hughes (1989).
This paper was prepared using the Noweb system for “lit-
erate programming” (Ramsey 1994), and all the Haskell
code in the paper has been automatically extracted and
run through the Glasgow Haskell Compiler, version 4.06.

The support monad In the support monad, we repre-
sent a distribution by a list of values it could contain.

〈probability monads〉+≡
newtype Support a = Support [a]

instance Monad Support where

return x = Support [x]

(Support l) >>= k =

Support (concat [s | x <- l, let Support s = k x])

instance ProbabilityMonad Support where

choose _ (Support l) (Support l’) = Support (l ++ l’)

instance SupportMonad Support where

support (Support l) = l

The expectation monad We represent the expectation
monad by a function that computes expectation directly.

〈probability monads〉+≡
newtype Exp a = Exp ((a -> Double) -> Double)

instance Monad Exp where

return x = Exp (\h -> h x)

(Exp d) >>= k =

Exp (\h -> let apply (Exp f) arg = f arg

g x = apply (k x) h

in d g)

instance ProbabilityMonad Exp where

choose p (Exp d1) (Exp d2) =

Exp (\h -> p * d1 h + (1-p) * d2 h)

instance ExpMonad Exp where

expectation h (Exp d) = d h

The sampling monad Again, we represent the sampling
monad as a suitable function.

〈probability monads〉+≡
newtype Sample a = Sample (RandomGen g => g -> (a, g))

instance Monad Sample where

return x = Sample (\ g -> (x, g))

(Sample s) >>= k =

Sample (\ g -> let (a, g’) = s g

Sample s’ = k a

in s’ g’)

instance ProbabilityMonad Sample where

choose p (Sample s1) (Sample s2) =

Sample (\g -> let (x, g’) = Random.random g

in (if x < p then s1 else s2) g’)

instance SamplingMonad Sample where

sample (Sample s) g = s g

165

